Fixed versus random effects

- Orange dataset growth of orange trees
- 'Repeated measures' design
- Analysis needs to deal with both a fixed effect (age) and a random effect (Tree) so is a 'mixed effects' model

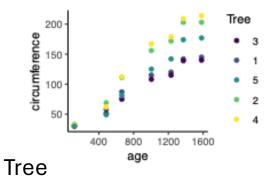


- Regression: numeric continuous response (circumference) with numeric continuous explanatory variable (age)
- Ok **BUT** only 5 trees different measurements of the same tree are **pseudoreplicates** so need to include tree
- Could treat as ANCOVA with tree as a numeric categorical variable
 lm(circumference ~ age * Tree, data = Orange)
- Fits lots of parameters, e.g. for exactly how Tree 4 is different from Tree 3

Do we care?
Not very parsimonious
What if there were 100 trees?

- Alternative: treat Tree as a 'random effect' and just estimate how much variation there is among trees
 - Reserve individual intercept/slope estimates for the 'fixed effect' (age)

Fixed versus random effects



Age	Fixed effect	Random effect
	Interesting in itself	Often a nuisance
	Response Mean of interest	Response Variability of interest
	Measured without error	Random sample of possible values
	Limited number of levels	Potentially infinite population
	2 or more levels	At least 5 levels

Practically for fitting a model

- Don't fit a random effect with <5 levels (e.g. if your random effect is 'replicate')
- Not always obvious whether to treat an effect as fixed or random
 - See "Should I treat factor xxx as fixed or random?" at https://is.gd/glmmFAQ
- Can fit models with only random explanatory variables, or where the scientific question is about the random effects
 - known as 'Variance components analysis'